Modal Event Calculus in Lolli

Hiano Cervesato, Luca Chittaro®, Angelo Montanari”
October 1994
CMU-CS-94-198

_ DTIC _
QELECTE R
) Rl)

TDIETHRU.ON STATEMENT A

Approved for publis releassy
Distribution Uniimited

danilizee

P oy P

N B e L L oL ¥ S PRERUR AVt L R

Modal Event Calculus in Lolli

Tiano Cervesato, Luca Chittaro®, Angelo Montanari”
October 1994
CMU-CS-94-198

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

*Dipartimento di Matematica e Informatica
Universita di Udine
Via Zanon, 6
33100 Udine - ITALY

A one-page abstract of this report will appear in the Proceedings of the International Symposium on
Logic Programming (ILPS’94), Ithaca, NY, 14-17 November 1994.

The work of the first author was partially supported by NSF grant CCR-9303383. The work of the last two authors was
partially supported by the P.A.O.L.A. Consortium (ASEM, INSIEL, and Universita di Udine).

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of either the National Science Foundation or the P.A.O.L.A.
consortium.

The authors can be reached by e-mail at iliano @cs.cmu.edu, chittaro@dimi.uniud.it, montana @dimi.uniud.it respectively.

This research was completed while the first author was visiting the Department of Computer Science of Carnegie Mellon
University. His permanent address is: Dipartimento di Informatica, Universita di Torino, Corso Svizzera 185, 10149
Torino - ITALY.

Keywords: temporal reasoning, reasoning about actions, nonmonotonic reasoning, logic programming,
modal logic, linear logic.

Abstract

This paper introduces two variants of the Event Calculus (EC) with relative timing of events:
the Credulous and the Skeptical Event Calculus (CREC and SKEC respectively). A model that
takes into account the dynamics of event ordering updates is constructed for EC. In this model,
that appears to be a restriction of the usual model for the modal logic S4, CREC and SKEC
are proved to be the modal counterparts of EC. It is then shown how a full propositional modal
logic based on these calculi can be conveniently and elegantly coded by means of the linear

logic programming language Lolli.

Accession For Ea

RIIS

DTIC TAB
Unanneunced
Juatificatio

GRASI

oony

v

By

Distributionf .

Avallability Codes

piat

3

Avall awd/or
Spsolald

1 Introduction

This paper studies the formalization of Kowalski and Sergot's Event Calculus [3, 9, 16, 17, 19, 20]
(hereinafter EC) in cases where information about the ordering of events is incomplete [1, 18]. This
situation arises in many real-world applications (e.g. [11]). Complete ordering information can be
impossible to acquire or it can arrive asynchronously with respect to the recording of event occurrences.

EC is a formalism for reasoning about time and change in a logic programming framework. Given a
set of event occurrences, EC allows to derive maximal time intervals (MVIs hereinafter) over which the
properties they initiate or terminate hold. However, when only partial knowledge about the ordering of
events is given, EC is neither able to derive all possible MVIs nor to distinguish which of the derived
intervals are defeasible and which are not. On the contrary, a typical human reasoner who is told a
narrative in which the ordering of events is not completely known is able to distinguish among
conclusions which can be certainly or possibly drawn. Moreover, he/she is able to change his/her beliefs
when provided with new information increasing the ordering. In order to produce comparable results,
we developed two variants of EC, namely the skeptical and the credulous EC [4] (SKEC and CREC
respectively). In the presence of a partially ordered sequence of events, SKEC and CREC derive the
intervals that are necessarily and possibly true, respectively. The results obtainable with these two
variants of EC are amenable to a rather intuitive modal interpretation. The first derives MVIs that will
be true in whatever final completion of the ordering, while the second derives those that may be true at
least in one possible refinement of the ordering. In [4] we provided both variants with a modal logic
interpretation that allows us to formally characterize the state of knowledge about event ordering and its
update as well as queries about maximal validity intervals. Furthermore, we discussed an example of
their application to a diagnostic case study concerning temporally distributed information about devices
behavior. In this work, we provide a different modal interpretation that integrates EC, SKEC and CREC
in a uniform modal logic framework. In particular, we show how the two latter calculi can be
respectively viewed as the operational counterpart of the modal operators of necessity and possibility.

In the last section, we show how the resulting modal logic can be conveniently and elegantly coded
by means of the linear logic programming language Lolli.

2 The plain Event Calculus

EC proposes a general approach to representing and reasoning about events and their effects in a
logic programming framework. It takes the notions of event, property, time-point and time-interval as
primitives and defines a model of change in which events happen at time-points and initiate and/or
terminate time-intervals over which some property holds. EC also embodies a notion of default
persistence according to -which properties are assumed to persist until an event that interrupts them
occurs. Formally, we represent an event occurrence by means of the happens predicate:

happens (event) .
A time-stamp can be attached to an event to record its occurrence time. In this work, we will focus our
attention on situations where precise date information for event occurrences are not available. Events
will therefore be ordered relatively to each other rather than with respect to an absolute time line. To
this purpose, we introduce the possibility of providing factual knowledge about the relative ordering of
events, expressed through the predicate beforeFact:

beforeFact (eventl, event2).

This representation allows the management of incomplete ordering information. Each time a new piece
of ordering information emerges, it is recorded by means of a beforeFact fact. EC exploits the transitive
closure of this ordering information defined by means of the predicate before:

before(El, E2) :- before(El, E2) :-
beforeFact (E1l, E2). beforeFact (El, E3), before(E3, E2).

The relation between events and properties is defined by means of initiates and terminates predicates
which express the effect of events on properties:

initiates(eventl, propertyl). terminates (event2, property2).

This initiates (terminates) predicate states that event! (event2) initiates (terminates) a period of time
during which propertyl (property2) holds.

The plain EC model of time and change is defined by means of a set of axioms. The first axiom we
introduce is holds. It allows us to state that a property P holds maximally between events Ei and Et if Ei
initiates P and occurs before Et that terminates P, provided that there is no known interruptions in
between:

holds (period(Ei, P, Et)) :-
happens(Ei), initiates{Ei, P),

happens (Et), terminates(Et, P),
before(Ei, Et), not broken(Ei, P, Et).

The negation involving the broken predicate is interpreted as negation-as-failure. This means that
properties are assumed to hold uninterrupted over an interval of time on the basis of failure to determine
an interrupting event. Should we later record an initiating or terminating event within this interval, we
can no longer conclude that the property holds over the interval. This is the non-monotonic aspect of the
calculus. The predicate broken is defined as follows:
broken(Ei, P, Et) :-
happens (E), before(Ei, E), before(E, Et),

(initiates(E, Q); terminates{(E, Q)),
exclusive (P, Q).

This axiom states that a given property P ceases to hold if there is an event E that happens between Ei
and Er and initiates or terminates a property Q that is incompatible with P. The exclusive(P, Q)
predicate [9] has been introduced as a constraint to force the derivation of P to fail when it is possible to
conclude that Q holds at the same time, and vice versa. Exclusivity is also a convenient means to
constrain interferences due to incomplete sequences of events relating to the same property. By adding
the axiom

exclusive (P, P).

we guarantee that the axiom broken succeeds also when an initiating or terminating event for property P
is found between the pair of events Ei and Et starting and terminating P, respectively.

3 Managing the temporal ordering of events

Database updates in EC provide information about the occurrence of events and their occurrence
times, and are of additive nature only [10]. Since EC computes MVIs by applying a default persistence
rule, an upgrading of its knowledge about events may result in some MVIs no longer derivable.
Therefore, the computed set of MVIs, i.e. the collection of holds(period(ei, r, et)) queries that succeed
against EC, can change cardinality and composition in response to updates.

In this work we focus on the case in which the set of event occurrences has been fixed once and for
all, and the updates only regard the ordering of events. In such case, the input process consists of the
addition of ordering pieces of information in the form of beforeFact facts. In [1] we introduced a
monotonic version of EC such that the set of computed MVIs monotonically increases with respect to
updates. In this work also the opposite view is taken: a variant of EC is defined which derives MVIs
every time there is no evidence that the temporal ordering makes them unviable, i.e. when the
terminating event does not precede the initiating one. The set of computed MVIs monotonically
decreases with respect to updates.

We nickname these two variants of EC skeptical Event Calculus (SKEC) and credulous Event
Calculus (CREC), respectively.

3.1 The skeptical and credulous Event Calculi

SKEC implements a sort of absolute persistence in order to exclude the possibility of deriving
information that could be later retracted, provided that the given set of event occurrences does not
change. The idea is to transform the definition of holds so that holds(period(ei,r,et)) succeeds if and
only if it is possible to conclude that no event affecting r will ever occur after ei and before et. In such a
way, the computed MVTs are indefeasible with respect to refinements of the ordering specification: new
ordering pieces coming in may result in new MVIs being derived, but every old MVI is still valid. Thus,
the set of MVIs computed by SKEC monotonically increases.

SKEC replaces the predicates holds and broken of EC with the predicates skeHolds and skeBroken,
respectively, which are defined by the following axioms:

skeHolds (period(Ei, P, Et)) :- skeBroken(Ei, P, Et) :-
happens (Ei), initiates(Ei, P}, happens(E), E \== Ei, E \== Et,
happens (Et), terminates(Et, P), not before(E, Ei), not before(Et, E),
before(Ei, Et), {(initiates(E, Pl); terminates(E, Pl)),
not skeBroken(Ei, P, Et). exclusive (P, P1l).

Differently from SKEC, CREC stresses the non-monotonism of EC: whenever it is not possible to
derive that a terminating event et precedes an initiating event ei, CREC assumes that et follows ei. Such
an assumption allows CREC to compute all MVIs which are not incompatible with a given set of
partially ordered events. More precisely, CREC computes every MVI that holds with respect to at least
one possible completion of the given partial ordering of events. When new information about the event
ordering is added, this set of computed MVIs monotonically decreases. Further constraining the
ordering of events may indeed invalidate previously computed MVIs, but it never forces CREC to
compute new MVIs. The input process can thus be viewed as a way of progressively selecting from the
initial set of all possible MVTs the subset of MVIs derivable from a totally ordered set of events.

The axioms of CREC are the same of EC but for the replacement of before(Ei,Et) with the negation
of before(Et,Ei) in the definition of holds. The resulting predicate creHolds is defined as follows:

creHolds (period(Ei, P, Et)) :-
happens (Ei), initiates(Ei, P),
happens (Et), terminates(Et, P),
not before(Et, Ei), not broken(Ei, P, Et).

3.2 Summary of the axioms

For the ease of the reader, we collect together the Prolog axioms of the event calculi presented so
far.

holds (period(Ei, P, Et)) :- (D
happens (Ei), initiates(Ei, P),
happens (Et), terminates(Et, P),
before(Ei, Et),
not broken(Ei, P, Et).

broken(Ei, P, Et) :- (2)
happens (E) ,
before(Ei, E), before(E, Et),
(initiates(E, Pl); terminates(E, Pl)),

exclusive (P, Pl).

skeHolds (period(Ei, P, Et)) :- (3)
happens (Ei), initiates(Ei, P),
happens (Et), terminates(Et, P),
before (Ei, Et),
not skeBroken(Ei, P, Et).

skeBroken(Ei, P, Et) :-)
happens (E),
E \== Ei, E \== Et,
not before(E, Ei), not before(Et, E),
(initiates(E, Pl); terminates(E, Pl)),
exclusive (P, P1l).

creHolds (period(Ei, P, Et)) :- (&)
happens(Ei), initiates(Ei, P),
happens (Et), terminates(Et, P),
not before(Et, Ei),
not broken(Ei, P, Et).

exclusive (P, P). (6)

before(El, E2) :- N
beforeFact (E1l, E2).

before(El, E2) :- (8)

beforeFact (E1l, E3),
before(E3, E2).

Clauses (1-8) are generically called the axioms of the extended Event Calculus and are referred to
as EC+. Clauses (1-2, 6-8) constitute the axioms of EC and are denoted as EC. We define the axioms of
CREC (CREC) as clauses (2, 4, 6-8) and the axioms of SKEC (SKEC) as clauses (3-4, 6-8) in a similar
way. A collection of happens, initiates, terminates and exclusive facts is called factual
knowledge; the letter F will be used to indicate it. Finally, a collection of beforeFact facts is referred to
as ordering information and is denoted with the letter O.

4 A modal logic reconstruction of the Event Calculus

The clausal definitions for EC, SKEC and CREC have a formal counterpart as a modal theory
where orderings are interpreted as possible worlds, each one denoting a different state of knowledge.
According to this interpretation, an MVI derived by EC translates into a formula which is true in the
current world, and its derivability according to SKEC and CREC corresponds to the truth of the formula
in every accessible world and in at least one of them, respectively.

4.1 Formalization of the Event Calculus with relative timing

In order to formalize EC, we first give a precise description of the factual knowledge, i.e. the events
under consideration, their relationships with the properties they initiate and terminate, and the
exclusivity relation among the latter.

A structure for the Event Calculus with relative timing (hereinafter EC structure) is a quintuple
H=(E, P, [.), {1, 1..)) such that:
o E= {e', ..., €'} is a set of events.
= {p', ..., p"} is a set of properties.

[.): P — 2F and {.]: P — 2E are respectively the initiating and the terminating map of H. For every
property p € P, [p) and (p] represent respectively the set of initiating and the set of terminating
events of p. We require [p) and (p] to be disjoint sets for every p € P.

e].,.[c PxPis a reflexive and symmetric relation called the exclusivity relationship, and models
exclusivity among properties.

In order to formalize the notion of ordering, let us denote with R* the transitive closure of a relation
R on a set A. We define o c E X E to be a knowledge state for E if 0" is a (possibly partial) strict
ordering on E, i.e. a relation over E that is irreflexive, transitive and antisymmetric. Let O be the set of
all knowledge states for E and Wz C O the set of all strict orderings on E (the pedices will be kept
1mphclt when no confusion can arise). Two knowledge states o, and o0, are equally informative if
0,* = 0,". This induces an equivalence relation ~ on O. It is easy to prove that O, and W are 1somorphlc
Therefore, in the following, a knowledge state o will always refer to the corresponding element o of W,
unless explicitly stated otherwise. .

(W, <), where < is the ordinary subset relation, has the structure of an ordered set. Moreover, it
can be easily proved that (W, M, &) forms a finite lower semilattice and that for every wi, w, € W,
wy T wy, = (W U wy)* is the lub of w; and w, w.r.t. € whenever this element belongs to W (w; and w,
may indeed contain incompatible pairs).

Let we W, any w'e W such that wc w' is called an extension of w. We denote the set of all

2

extensions of w as Ext(w). The following lemma is obvious but extremely important.
Lemmal (Monotonicity of extensions)
If (e;, ;) € w, then for every w' € Ext(w), (e, e2) € W.
Proof
By the definition of extension, (e, ;) € wC w'. |

Let us now define a translation function t(.) from an EC structure to its logic programming

counterpart, as defined in Section 2. 7(.) is defined by cases:

e T(E) = {happens(e) : e € E};

e 7([.)={initiates(e, p) :e€ E,pe Pandee€ [p)};

o 1({.]) = {terminates(e, p) :e€ E,pe Pande € {p]};

e 1(].,.[) = {exclusive(p, q) : p,q € Pand]p, q[}.
We define T(H) as the union of these sets, plus the axioms of EC, SKEC and CREC (except the
exclusivity axiom) reported in section 3.2. It can be easily proven that t(.) is well-defined and is indeed
an isomorphism between EC theories and syntactically correct Prolog programs for the event calculi.

Moreover, we extend 1(.) to provide a translation of states of knowledge:
« for every state of knowledge o0 € O, 1(0) = {beforeFact (e, €;) : (e}, €2) € 0}.

Notice that the resulting function continues to be an isomorphism.

4.2 A uniform modal framework for EC, SKEC and CREC

We investigate now the properties of EC structures and their relationships to the event calculi
introduced in Sections 2 and 3. We first need a language where to interpret the query predicates (holds,
skeHolds and creHolds) of EC, SKEC and CREC.

Let H=(E, P, [.),{],1.,.) be an EC structure. The base language for H is defined as
Lg={p(e, e)) : e;,es€ E, pe P}. The modal language for H is L*c={a, Oa, 0ot : ote Lg}. The
propositional modal language for H, L®, is the modal language obtained by drawing the propositional
letters from the base language of H, and combining them by means of the usual propositional
connectives and the modal operators. Ly is defined by the following grammar, where, as above, o
ranges over strings in the base language:

=0l loAQ o ve Ol 0p
We call EC formulae the elements of L®. The simplified notations L, L* and L® will be used when no
ambiguities arise. In this section, we focus on L and L*. In particular, we show that EC formulae in L*
can be given a meaning in a restriction of the S4 modal logic and that this meaning is the formal
counterpart of the set of derivable MVIs in EC, SKEC and CREC. The full language L will be analysed
in the next section.

We now introduce a modal interpretation for EC formulae. Given an EC structure
H=(E, P, [) {}] 1., an EC-frame for H is defined as the structure F = (W, c, v) where
e (W, <) is the ordered set of all strict orderings on E defined above (where < assumes the role of
accessibility relation);
e V:LXW— {true, false} is called the evaluation function of H and is such that
v(p(e,, e;3), w) = true iff

e, € [p); (i)
e, € {p; (i)
(e1, €2) € w; (i)
—3deec E.((ej,e) € wA (e, e) e w

~3dge P.((e€ [g) vee {q]) Alp, q]). (iv)

The last condition expresses the requirement that p holds uninterruptedly between e, and e,. As a
matter of convenience, let us denote it as nb(p, e, e;, w). Notice also that, since w is a strict
ordering, (e, ¢) € wand (e, e;) € wentail that ¢; # e and e # e5.

Notice that EC-frames structurally constitute a subclass of the usual S4-frames. Indeed, the latter
are characterized by enforcing the reflexivity and the transitivity of their accessibility relation. Here, we
add a request for antisymmetry. Therefore, every S4-valid formula holds in an EC-frame, but the
converse is not true in general.

Finally, we define the notion of satisfiability of a formula in a knowledge state by means of the
relation w = @:

o wh=ple,e) iff v(pley,), w) = true;
e wk=0Oo iff forevery w € Wsuchthatwg w', w' = o;

6

e wkE=0p iff there is w' € W such that w = w' and w' |=o;
o whkE=—o iff w = @ does not hold;

e wkEQ A, iff w k=0 and w = @y;

L4 W'=(p|V(pz iff W|=(p|OI'W|=(p2.

Lemma2 (Pointwise condition for necessity)

Let H=(E, P,[.),{],1.,.[) be an EC structure. Then for any e;,e;€ E, pe P and w € W,
w = Op(ey, e;) iff the following conditions are satisfied:
e € [p)
e, € {p]
(el, ez) eEw
nsb(p, ey, €2, w),
where nsb(p, €|, e;, w) stands for the expression
Vee E.Vge P.(e=¢
Ve=ée
vie,e)) ew
viey, e)ew ‘
v(ee [g)vee (gl = —lpqD)
Proof

(<) Let us proceed by contradiction. So, assume that e; € [p), e;€ (p]l, (e1,e2) € w and
nsb(p, ey, e;, w), but there exist an extension w' of w such that w' = p(ey, ;) does not hold, i.e. such
that nb(p, e,, e,, w) is false. After some logical manipulations, the latter statement rewrites to

Jee E.Jge P.((er,e) e W A(e,e) € walee [g)vee (q]) Alp,qD)
Let ¢ and ¢' witness the validity of this formula. By instantiation, we obtain:
(e,&)e wa(é,eewn(@elg)vée (gD Alpql (A)
We can instantiate the expression for nsb(p, e, e;, w) with these values too. The resulting formula is:
é=e vé=ev(é el)’e wv (e, é)ewv(ée [qg)vée (gd]1==lpgD (B)

We must show that none of the alternatives in formula (B) applies. Since w is a strict order, the validity
of (A) implies that & can be neither e, nor e,. Analogously, by lemma 1, either (¢, ¢)) € wor (€3, é) e w
would violate the antisymmetry of w'. Finally, the choice of ¢' contradicts the last alternative, i.e. that
(é € [¢) v é € {(q] = —]p.q'D- This concludes this direction of the proof.

(=) We will again proceed by contradiction. Clearly, if ¢, ¢ [p) or e; € (p], then we cannot obtain
w |= p(ey, ey) in any state of knowledge w'. If (e, &2) & w, then there exist extensions of w containing
(5, €,). Because of antisymmetry, these extensions cannot contain (e, €2), thus, p(e,, e,) cannot be valid
in them.

Assume now that nsb(p, e, e;, w) does not hold. Therefore, there are an event é and a property ¢'
such that: ‘

ére néztern@e)ewnlené)ewna@elg)vée (g Alpql

Since the pair (e, e;) € w, there exists at least one extension w' of w such that (e, é) € w' and
(é, e;) € w. Therefore,

(e,)e wAa(é,ex)ewnan(e[ghvéeld)Alp, gl
hence nb(p, ¢,, e;, w') does not hold. This contradicts the hypothesis that w = Op(ey, e). 0%}

Notice that, differently from nb(p, ey, €1, w), nsb(p, e, e, w) requires that for all ¢ € E satisfying
certain conditions, (e, e;) € w and not only (e, €) ¢ w; similarly for (e,, e).

Lemma 3 (Pointwise condition for possibility)

Let H=(E, P,[.),{.],1.,.D) be an EC structure. Then for any e;,e;€ E, pe P and w € W,
w = 0Op(e,, e,) iff the following conditions are satisfied:
- e € [p)
ez € {p]
(62, el) & w
nb(p, ey, €, w).

Proof

(<) Let us construct an extension w' of w such that w' = p(e,, ;). The state of knowledge w' is
defined as w' = (w U {(ey,) })". First notice that w' is consistent (i.e. it does not violate antisymmetry)
since w is consistent and (e, ;) € w. Then observe that nb(p, e|, >, w') holds by the definition of w' and
the monotonicity of extensions. Otherwise, we should be able to conclude that there is an event e € E
such that (e}, e) € W, (e, e;) € w and e € [q) or e € (g] for some property ¢ € P with]p, ¢[, but in that
case, (e|, ¢) € wand (e, e;) € wcontradicting the assumption that nb(p, e,, e,, w). Therefore, conditions
(i-iv) are satisfied w.r.t. w', hence w' |= p(e,, ;) thus w = 90p(ey, €2).

(=) We proceed by contradiction. Clearly, if ¢, € [p) or e; ¢ (p], then we cannot obtain
w' = p(e, e;) in any state of knowledge w'. Analogously, if (e;, ;) € w, then (e, ;) belongs to every
extension of w, forbidding in this way the condition (iii) of the definition of evaluation to be satisfied.
Finally, if nb(p, e,, e;, w) does not hold (i.e. there is an event e € E such that (e, e) € w, (e, €2) € wand
e € [q) or e € {q] for some property q € P with]p, g[), then by lemma 1, the same condition would
apply to every extension w' as well, thus nb(p, ¢,, e;, w') would not hold in any extension w' of w. ~

Lemma4 (Soundness and completeness of before w.r.t. transitive closure)

Let H=(E, P, [.), {.], 1.,.[) be an EC structure and o a state of knowledge, then

T(H), ©(0) }—sLpnr before (e, €;) iff (e, €7) € o™
Proof

(=) We will prove the statement by induction on the height of a resolution tree for
T(H), 1(0) —sLpnr before(e;, e3). If the height is 1, then clause (7) in section 2.3 must have been
used. Thus, T(H), T(0) |—sLpnr beforeFact (e;, e;) and therefore, (e, €;) € 0 C o'. Otherwise, let us
assume that this tree has height h+1, the first rule applied must be clause (8). By unfolding, we obtain
that T(H), T(0) |—sLpnr beforeFact (e, e) and T(H), T(0) —sLonk before (¢, ¢;), for some event e,
where the latter has a derivation tree of height h. Thus, (e, €) € 0 and by the induction hypothesis,
. (e, e;) € 0*. Now, by the definition of transitive closure, (e, e;) € 0".

(&)Let 6=¢,,...,é, with é, = e¢; and é, = e, be a sequence of events such that for i=1../-1
(&, éi11) € o, proving in this way that (e, ;) € 0*. We conduce the proof by induction on the length / of
this sequence. If [= 1, then (e, €;) € o, thus T(H), 1(0) |—sLpnr beforeFact (e;, €) and, by clause

8

(7), T(H), 1(0) }—sLpne before (e, e;). Otherwise, c=¢,, ¢, ..., &2, With (e;, é) € 0 and (&, e;) € o".

By induction hypothesis, we have that T(H), 1(0) F—sLpnE beforeFact (¢y, €) and,

T(H), 1(0) |—sLonr before(é, e3). Finally, by applying clause (8), we obtain that

T(H), 1(0) I__SLDNF before(e, €3). ' 4|
We can now state the major result of this paper:

Theorem 5 (Soundness and completeness of EC, SKEC and CREC w.r.t. the EC-frame semantics)

Let H = (E, P, [.), {.],]...) be an EC structure and o a state of knowledge, then

a) T(H), 7(0) |sLonr holds (period(er, p, €2)) iff o' =pley, €2);

b) T(H), 1(0) |—sLpnr skeHolds (period(e, p, €2)) iff o* |=D0pley, e2);

¢) T(H), 1(0) |—sLpnF creHolds (period (e, p, €3)) iff o' =0p(e, e).
Proof

a) (=) Assume first that T(H), T(0) F—sLpnr holds (period(e;, p. €)). We first prove that, with this
hypothesis, V(p(ey, €2), 0*) = true; the thesis will follow by the definition of validity.

By unfolding clause (1) we obtain the following relations, where the right column shows the
translation of the Prolog code on the left column into the EC theory H, according to T-'.

e T(H), ©7(0) }-sLpnr happens (e;) a.l e € E
o T(H), 1(0) }—sLpnr initiates (e, p). a2 e € [p)
o T(H), T€0) |—sLpNF happens (€3) a3 ere E
e T(H), ©(0) |—sLpNE terminates (€3, p) a4 e, € (p]
o T(H), ©(0) |—sLpnr before(e;, €3) a.5 (e, e2) € OF
e T(H), ©(0) |—sLpne not broken(ey, p, €;) a.6

By the soundness and completeness of SLDNF resolution for ground negative calls and non
recursive negative clauses [12], a.6 is a valid relation if and only if broken(e,, p, e;) is not
derivable from T(H) and T(o) through SLDNF resolution. By unfolding clause (2), we obtain that
T(H), T(0) }—sLpnE broken (e, p, e;) if and only if:

e T(H), ©(0) }-sLpnr happens (€) al ec E
o T(H), ©7(0) |—sLpnF before(e;, e) a.8 (e;, e) € o
e T(H), ©(0) }—sLpnr before (e, €3) a.9 (e, ex) € 0"
o T(H), 7(0) |—sLpnr initiates(e, q); terminates(e, ¢) al0 eelg)vee (q]
e UH), T(Oj F—sLpnE exclusive (P,) a.ll Ip, gl

As highlighted in the right column, by the definition of T and lemma 4, T©(H), ©(0) }—sLponr
broken(e;, p. ey will succeed if and only if there is an event e € E such that (e, e) € o',
(e, €)) € 0%, e € [q) or e € {q], and]p, g[for some property q € P. Therefore, the previously stated

relation .6 holds if and only if =3¢ € E. ((e;, ¢) € 0" A(e,e) € 0" Adge P.((ee [q) vee (gD A
1p, gD)), i.e. iff nb(p, ey, €3, 0*), but this is precisely the condition (iv) of the definition of evaluation.

Now, it suffices to notice that the relation @.2, a.4 and a.5 correspond respectively to the
conditions (i), (ii) and (iii) of this definition. Therefore v(p(e,, €3), 0") =true and thus

o E=pley, e2).

a) (&) It suffices to notice that the proof just given is indeed bi-directional, even if this fact has not
been stressed for the sake of readability.

b) (=) The technique used for proving a) will be applied again. Therefore, assume that
T(H), T(0) }—sLpne skeHolds (period(e;, p, e3)). Let us first prove that, with this hypothesis,
e, € [p), e; € (p], (e, €2) € 0" and nsb(p, e, e,, 07); the thesis will follow by lemma 2.

By unfolding clause (3) we obtain the following relations, where the right column shows the
translation of the Prolog code on the left column into the EC theory H, according to T-l.

e T(H), 1(0) }—sLonr happens (e)) b.1 e € E
e T(H), 1(0) |—sLpnr initiates(e;, p) b.2 e € [p)
e T(H), 1(0) |—sLonF happens (€3) b3 ere E
e T(H), 7(0) }—sLpnF terminates (e;, p) . b4 es € (p)
e T(H), ©(0) |sLonr before (e, €3) b.5 (e), &) € o*
o T(H), ©7(0) sLpnr not skeBroken (e, p, €;) b.6

Again by [12], b.6 is a valid relation if and only if skeBroken (e, p, e;) is not derivable from
T(H) and 1(0) through SLDNF resolution. By unfolding clause (4), we obtain that T(H), T(0) |—sLpnr
skeBroken (e, p, e;) if and only if:

e T(H), 1(0) |—sLonr happens (€) b.7 ec E
o T(H), 1(0) }—sLonr e \== ¢ b.8 e#e
e T(H), 1(0) I"'SLDNF e \==¢) b.9 e % e
o T(H), 1(0) }—sLpnp not before(e, e;) b.10 (e,e) g oF
o T(H), ©9(0) |—sLpnE not before(e;, €) b.11 (€2, €) & O
e T(H), ©Y(0) |—sLpnF initiates(e, q); terminates(e, q) b.12 ee[g)vee {q]
o T(H), 7(0) |—sLpnr exclusive (p, q) b.13 Ip, gl

As highlighted in the right column, by the definition of T and by lemma 4, T(H), 1(0) |—sLponF
skeBroken (e, p, €;) succeeds if and only if there exists an event e € E distinct from ¢, and ¢, such
that (e, e)) € o', (ex, €) € 0, either e € [g) or e € {(q], and]p, ¢g[for some property g € P.
Therefore, the relation b.6 above holds if and only nsb(p, e;, e,, 0*) holds.

Now, it sufﬁées to notice that the relations 5.2, b.4, b.5 and b.6 correspond to the conditions of
lemma 2. Therefore o* = Op(e,, ¢;).

b) (<) Again, the previous proof is bi-directional.

10

¢) (=) Assume that T(H), ©(0) —sLpnF creHolds (period(e;, p, e3)). Let us first prove that, with
this hypothesis, e, € [p), e € (p], (€2, €}) & 0" and nb(p, e, €2, o"); the thesis will follow by lemma
3.

By unfolding clause (5) we obtain the following relations, where the right column shows the
translation of the Prolog code on the left column into the EC theory H, according to T-l.

e T(H), ©(0) }—sLpnF happens (¢)) c.l ere E
o T(H), ©(0) }—sipnr initiates (e, p) c.2 e € [p)
e T(H), 1(0) |—sLpnF happens (€3) c3 ere E
o T(H), 1(0) |—sLpNF terminates (e, p) c4 e, € (p]
e T(H), ©(0) }—sLpnE not before(e;, €) c.5 (e2,€)) & O
e T(H), 1(0) |—sLpnr not broken(ey, p, €) c.6 nb(p, ey, €2, 0")

where the last line derives from the proof of a).

The relations c.2, ¢4, ¢.5 and c.6 correspond to the conditions of lemma 3. Therefore
o" =90p(ey,).
¢) (&) Once more, the previous proof is bi-directional. 1

These results are the formal counterpart of the intuitive description of the behavior of holds,
skeHolds and creHolds presented in the previous sections. The relative cardinalities of the sets of values
satisfying these predicates are related in the following corollary, which, again, agrees with our intuition.

Corollary 6
Let F and O be the factual knowledge and the ordering information of a specific instance of the
Event Calculus, then

a) if EC+, F, O }—sipnF skeHolds (period(ey, p, €;))
then EC+, F, O l__SLDNF holds (period{e;, p, €3))

b) ifEC+,F, 0 I'_SLDNF holds (period(ey, p, €2))
then EC+, F, O |—sLpng creHolds (period(ey, p, €2))

Proof

These relations can be rewritten in the following way:

Let H=TY(EC+ UF)and o = 1(0), then
a) if H, o* |=0pley, 1), then H, 0" }=p(e, e2);
b) if H, o* k= p(ey, €2), then H, 0" |=0p(ey, e2).

The validity of these expressions is a direct consequence of the reflexivity of the accessibility
relation of EC-frames. Indeed, H, o' = Op(e,, e,) iff p(e,, e;) is valid in every extension of o', in
particular in o* itself. Analogously, if H, 0" = p(ei, e2), then H, 0" [=Op(ey, e2) by reflexivity. |

We can restate this corollary in a form closer to the Event Calculus terminology. Let MVlIgc,

MVIgkgc and MVIcgee denote the set of MVIs derivable from EC, SKEC and CREC respectively in a
given state of knowledge o, then MVIskec(0) < MVIgc(0) € MVIcrec(0).

11

5 Handling propositional connectives in EC, SKEC and CREC

In the previous chapter, we proved that EC, SKEC and CREC can be given a uniform modal
semantics by interpreting these calculi into EC-frames. These are indeed specific forms of S4-frames.
Therefore, the theoretical results obtained in the latter setting apply to the former. In particular, S4-
frames provide a model for the usual boolean connectives. We could take advantage of this fact,
obtaining in this way a more powerful unified calculus, if we only were able to implement the
connectives in such a way to take into account their interaction with the modalities. This is problematic
in Prolog. In fact, when dealing with the modalities, we often need to explore some or even all of the
possible future states of knowledge. Using assert and retract statements for this purpose is awkward
and lacks flexibility. Another solution, experimented to a limited extent in [4], consists in maintaining the
extensions to the current knowledge state into a hypotheses list; this is bulky and solves the problem
only partially.

With these considerations in mind, we decided to adopt a different implementation language.
Specifically, we turned our attention to the linear logic programming language Lolli, that is indeed an
extension of Prolog. Lolli is based on linear logic and therefore allows to model the retraction of a fact
from the current knowledge state as a resource consumption. Moreover, by allowing implications in
goal, this language, as well as its precursor AProlog, provide an effective and logical means of
temporarily asserting new facts into the database.

5.1 The linear logic programming language Lolli

Miller et al. [15] have defined a general criterion (existence of uniform proofs) for extracting
fragments of logical systems suited to be implemented as logic programming languages. The language of
Horn-clauses, on which Prolog is based, has been proven to have the required properties, and has indeed
been shown to exploit only to a minimal extent the connective patterns of predicate logic that ensure the
existence of such proofs. In particular, they show that it is possible to go beyond Horn-clauses by
allowing implication and universal quantification in goals. While not prejudicing the possibility of an
efficient implementation, this enhancement increases enormously the expressiveness of the language
[14]. The language AProlog is a realization of this idea in a simply-typed higher-order setting [13, 15].

AProlog stems from intuitionistic predicate logic. However, uniform proofs are a general concept in
proof theory. The logic programming language Lolli [6, 7] is the result of applying this criterion to linear
logic [5]. The short space available forbids us to give a detailed account of linear logic and to present a
complete description of Lolli. The interested reader is invited to read the above mentioned references.
We intend instead to illustrate only those aspects that are needed in the subsequent.

Linear logic is a refinement of traditional logic that constrains the number of times an assumption is
used in a proof. A formula G is derivable from a set of formulae D if and only if there is a proof of G
that uses exactly once every formula in D, with the exception of formulae that are preceded by the
modal operator ! (read of-course or bang), which indicates that this formula can be used as many times
as needed in the derivation, eventually zero. It is convenient to write linear sequents as D; R |— G,
where G, D and R are respectively the formula to prove, the set of banged assumptions and the set of
non-banged premises. R can be seen as the resources available for the proof of G, while the elements of
D are costless items. R and D are called the bound and unbound context respectively.

The duplication of the left-hand side of linear sequents, a direct consequence of the constraints on
the use of formulae in proofs, entails the definition of a new set of connectives for the resulting logic.

12

With a drastic simplification, we can say that every binary connective in traditional logic is transformed
in a pair of linear connectives, one requiring the bound context to be duplicated when proving its
subformulae, and the other having it split among them. The linear connectives on which Lolli is based
are ® (multiplicative conjunction, or times), & (additive conjunction, or with), @ (multiplicative
disjunction, or oplus), -o (linear implication, or lollipop), => (traditional implication), plus ! (bang) and
the two constants true and erase.

The syntax of Lolli is reminiscent of that of Prolog, with some notational differences. Variables
begin with an uppercase letter, unless explicitly quantified, while constants begin always with a
lowercase letter. Terms and atoms are written in curried form. For instance, the Prolog term
f(a, g(b, c), d) is writtenin Lolli as (f a (g b) d) (the outermost parentheses are not needed).

Lolli program and goals are constructed according to the grammar show below, where A, G, R and
D are syntactic variables for atoms, goal formulae, linear clauses and banged clauses; the use of the G, R
and D is coherent with their use in linear sequents above. In the following, we will use expressions built
out of the productions in bold face only.

R:=true!lAIR{&R;IR :~-G|R <= Gl forallx\ R
D:=RI|{(Ry|D,, Dy

G:=trueleraselA| (G} 1G1&G,1Gy, G3I1D -0oGIR=>G| forall x\ G
|existsx\G|G1;G2|G1->G2|G3

We give a connective-directed operational semantics for goals, limiting ourselves to the patterns
that will be used in the following. We write S = §; + S, to indicate that S| and S, form a partition of the
set S. In order to keep the notation simple, we write S+s and SUs instead of S+{s} and Su{s} when no
ambiguity arises.
true always succeeds without consuming any resource. Therefore, any formula in the bound

context must be used in other parts of the proof of the current goal. ‘

D; D |roLui true

erase always succeeds too, but consumes every resource in the bound context. It is usually
exploited to ignore information eventually present into the bound context and not needed in
the proof of the current goal.

D; R }oLui erase

A looks for a linear or banged clause h:-b (eventually a fact) which head unifies with the
atomic goal A and tries to solve its body in the current context. If the selected clause s
linear, it is removed from the bound context. :

DuUh:-b;R '_LOLLI A if AS=h0 and D;R I_LOLL[bo

D;R+h:-b oA if AS=hS and D;R |roLu b°
(G} (bang G) attempts to solve the goal G without using any formula in the bound context.
D; R |LoLu (G} iff D;D Lo G

G,. G, (G, times G,) first attempts to find a proof for G, and, in case of success, attempts a proof
for G, that uses whatever element of the bound context were not used in the proof of G, .
Therefore, it divides the resources in the bound context between G, and Go.
D;R, +R 1o G1 .G, iff D; Ry Fotw Gi and D; R; frouu Go

13

Gl&Gg

d=>G

G->GS] Gf

(G, with G,) operates as in the previous case with the difference that it tries to prove both
G, and G, using the same resources. Therefore, it duplicates the resources in the bound
context for each conjunct.

D; R oLu G & G> iff D;R oG and D; R oL G2

(G, oplus G,) first attempts to find a proof for G, and, in case of success, have the overall
goal succeed. In case of failure, a proof for G, is attempted using the same set of resources
as for G,.

D;Rb-10uu G : Gy ifft D;R po Gi or D;R o G2

(r lollipop G) causes the clause r to be added to the bound context and a proof for G to be
attempted from this augmented program.
D;R}—oir oG iff D;R+r Lo G

(d implies G) causes the clause d to be added to the unbound context and to attempt a proof
for the goal G from this augmented context. It is logically equivalent to {d}-o G.
D;Rloud=>G iff DUdiR oG

(guarded expression) is the one extra-logical operator included into the current
implementation of Lolli. Such a goal attempts a proof of G. In case of success, the overall
goal succeeds if G succeeds. If instead the interpreter fails to find a proof for G, it tries to
find a proof for Gy and its success determines the success of the overall goal.
D; R l_LOLLl G -> Gs |Gf iff if D; R '_'LOLLI G then D; R l'—LOLLl GS
else D; R '_LOLLI G(
Such guarded expressions have been used in our implementation to model negation as

failure. In fact,
not G :- G -> fail | true.

Linear and banged clauses are entered into the appropriate context either as the effect of solving an
implication goal, or by reading them from a file. In the latter case, clauses are implicitly banged; linear
clauses are preceded by the keyword LINEAR.

Implication in goals combined with universal quantification yields a powerful scoping mechanism
[14]. Lolli provides a module system realized through the combination of the two. Modules are

parametric

5.2 Lolli

and permit abstraction and information hiding by means of the LocaL declaration.

coding of EC, SKEC and CREC with connectives

Let us now define a coding function o(.) from EC formulas of the complete language L® to well-
formed Lolli expression. o(.) is defined recursively as follows.
o(p(ey, €2)) = (period e; p e€3)

o@o) = (must o(Q))
c(0p) = (may o(9))

o(=®) = (not o(®))
o(P; A @) = (and S(¢;) S(¢2)
o(g; v @) = (or o(@)) o(92))

Notice that o(.) is indeed an isomorphism between L® and Lolli expressions built out of the functors
must, may, not, and and or (where the first three are unary and the last two are binary), and expressions

14

‘of the form (period e, p e;) where e; and e, are the representation of events and p is the
representations of a property.

We now turn to the theoretical results that will lead to the implementation of L®. The following
lemma provides us with the means for handling generic formulae having a modal quantification as their
outermost connective.

Lemma 7

Let L® be the modal propositional language of an EC structure H = (E, P, [), (.1, 1.,-D, © a formula
in L® and w € W, then
aywhkE=0e iff wlk=o
andw T {(e, e)} =00 forevery (e, e;) such that (e, e2) € wand
(€2, €1) € W,

bywlkEoe iff wlk=o
or wT {(er, €)} =00 where (¢, ;) € wand (e, €) & w.
Proof

First notice that if (e;, e;) € w and (e, e;) € w, then wT {(e1, &)} € W since, in this case,
upgrading with (e;, e;) cannot violate antisymmetry in any way.

Moreover, forevery we W,

Ext(w) = {w}u U Ext(wT{(eI,ez)}).
(e.e3)E W

(e3,e;)€ W

In fact, let w' € Ext(w), then, by definition, w c w'. Therefore, either w'=w or there exist a pair
(e, €2) € w' \ w. In the latter case, w' € Ext(w T {(e1, €2)}). The opposite inclusion is straightforward.

We have now all the tools needed to prove the statement of the lemma.
a) w = O iff foreach w' € Ext(w), w' =0
iffforeachw e (wju U Ext(wT{(e,.e)}), W =9

(ey.¢5)ew
(e3,e1)Ew
iff w = ¢ and for every (e, e3) such that (e, e;) ¢ w and (e, e;) € w, then for each
we ExtwT {(e, e)), W =0
iff w = @ and for every (ey, e,) such that (e, e2), (ey, €2) &€ w, w T {(e1,)} =0o.
b) The proof is completely analogous to that for a).]
In the subsequent, we will write a) into a different but clearly equivalent form:
w [=D0e iff itis not the case that

w = @ does not hold or
wT {(e1, e2)} = 90— for some (e, e;) such that (e, ez) ¢ wand (e, €)) € w.

In S4, many connective have a simple interaction with the modal operators and can be coded by
means of elementary rewriting rules. When implementing the unified theory, we can avoid or at least

delay visiting the extensions of the current state of knowledge by applying these rules. The following
properties are valid in S4, and therefore in EC-frames. A proof can be found in [8].

Property 8

Let L be any propositional modal language, |=s, the validity relation in S4-frames [8] and ¢ a
formula in L, then

[=s4 O—¢ iff =54 =0

F=s4 00 iff =ss =0

F=s« 000 iff =ss Do

F=sq 000 iff =54 00

F=sa 0@ A @) iff F=ss 0oy A O,
=54 001 Vv @) iff =54 09, v 00,

4]

We can now give the implementation of our extension of EC, SKEC and CREC with the
connectives.

MODULE ec.

LOCAL broken skeBroken skeHolds_or skeHolds_may.

Propositional formulae

holds (period Ei P Et) :- @))]
happens Ei,
initiates Ei P,
happens Et,
terminates Et P, erase &
before Ei Et, erase &
not (broken Ei P Et), erase.

broken Ei P Et :- (2)
happens E,
before Ei E, erase &
before E Et, erase &

skeBroken Ei P Et :-

holds

Must-formulae

(must (period Ei P Et)) :-

happens Ei,

initiates Ei P,

happens Et,

terminates Et P, erase &
before Ei Et, erase &
not (skeBroken Ei P Et),erase.

N

(8)

happens E,
not (E = Ei),
not (E = Et), erase &
not (before E Ei), erase &
not (before Et E), erase &
(initiates E Q ; terminates E Q),
exclusive P Q, erase.

holds (must (not X)) :- 9)
not (holds (may X)), erase.

16

(initiates E Q ; terminates E Q),

3
C))

&)

(6)

(10)

(n

(12)

(13)

(14)

(15)

exclusive P Q, erase.
exclusive P P.
holds (not X) :-

not (holds X), erase.
holds (and X Y) :-

holds X & holds Y.
holds (or X Y) :-

holds X; holds Y.
holds (must (and X Y)) :-

holds (must X) & holds (must Y).
holds (must (or X Y)) :-

not (skeHolds_or X Y), -erase.
skeHolds_or X Y :-

not (holds X), not (holds Y).
skeHolds _or X Y :-

happens El, happens E2, erase &

not (before E1 E2), erase &

not (before E2 El1}), erase &

beforeFact El1 E2 =>

may (not (hold (or X Y))).

holds (must (must X)) :-

holds (must X).
holds (must {(may X)) :-

not (skeHolds_may X}, erase.

skeHolds_may X :- " (16) not (before E2 El1), erase &
not (holds X). beforeFact E1 E2 =>
skeHolds_may X :- (17) may (not (hold (may X))).
happens E1, happens E2, erase &
not (before El E2), erase &
Fmm May-formulae
holds (may (period Ei P Et)) :- (18) beforeFact El E2 =>
happens Ei, holds (may (and X Y)).
initiates Ei P, holds (may (or X Y)) :- (22)
happens Et, holds (may X); holds (may Y).
terminates Et P, erase &
not (before Et Ei), erase & holds (may (may X)) :- (23)
not (broken Ei P Et), erase. holds (may X).
holds (may (not X)) :- (19) holds (may (must X)) :- 24)
not (holds (must X)), erase. holds (must X).
holds (may {(must X)) :- (25)
holds (may (and X Y)) :- (20) happens E1, happens E2, erase &
holds (and X Y). not (before El1 E2), erase &
holds (may (and X Y)) :- 2n not (before E2 El), erase &
happens E1, happens E2, erase & beforeFact El1 E2 =>
not (before E1l E2), erase & holds (may (must X)).
not (before E2 E1), erase &

Clauses 13, 17, 21 and 25 are particularly interesting since they make use of the implication in the
body of clauses. Notice in particular how clauses 11 and 15 implement the alternative formulation of
case a) of lemma 7.

The following theorem guarantees that the previous Lolli program is a sound and complete
implementation of EC, SKEC and CREC with connectives.

Theorem 9 (Soundness and completeness of EC, SKEC and CREC with connectives w.r.t. the EC-
frame semantics)

Let H=(E, P, [.), {.],].,.[) be an EC structure and o a state of knowledge, then
UH), 1(0); @ FLoLu holds (6()) iff o =0 ‘

Proof

Apply the technique used in the proof of theorem 5 together with lemma 7, property 8 and the
statement of theorem 5 itself.]
References

[1] I. Cervesato, A. Montanari, A. Provetti: "On the Non-monotonic Behavior of Event Calculus for
Deriving Maximal time Intervals”, to appear in The International Journal of Interval
Computation, 1994.

[2] I. Cervesato, L. Chittaro, A. Montanari: "The Event Calculus as a Modal Theory", Research
Report (in preparation), Dipartimento di Matematica e Informatica, Universita di Udine, Italy,
1994.

17

(3]

[4]

(5]

(6]

[7]

(8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. Chittaro, A. Montanari: "Reasoning about Discrete Processes in a Logic Programming
Framework", in Proc. of GULP'93 - Eight Conference on Logic Programming, Gizzeria Lido
(CZ), Italy, June 1993, pp. 407-421.

L. Chittaro, A. Montanari, A. Provetti: "Skeptical and Credulous Event Calculi for Supporting
Modal Queries", to appear in Proc. ECAI'94 - 1lth European Conference on Artificial
Intelligence, Amsterdam, The Netherlands, August 1994.

1.Y. Girard: "Linear Logic", in Theoretical Computer Science, Vol. 50, pp 1-101, North-Holland,
Amsterdam, 1987.

J.S. Hodas: Documentation of the Release 0.7 of Lolli, available by anonymous ftp from
ftp.cis.upenn.edu, directory /pub/Lolli.

1.S. Hodas, D. Miller: "Logic Programming in a Fragment of Linear Logic", to appear in the
Journal of Information and Computation.

G. Hughes, M. Cresswell: "A Companion to Modal Logic", Methuen, London, 1984.

R. Kowalski, M. Sergot: "A Logic-based Calculus of Events", in New Generation Computing,
Vol. 4, Ohmsha Ltd and Springer-Verlag, 1986, pp 67-95.

R. Kowalski: "Database Updates in the Event Calculus", in Journal of Logic Programming, Vol.
12, June 1992, pp 121-146.

D.C. Moffat, G.D. Ritchie: "Modal Queries about Partially-ordered Plans", in Journal of Expt.
Theor. Artificial Intelligence, Vol. 2, 1990, pp 341-368.

J.W. Lloyd: "Foundations of Logic Programming" (second edition), Springer-Verlag, 1987.

D. Miller: "A logic programming language with lambda-abstraction, function variables, and simple
unification”, in Proceedings of the International Workshop on Proof-Theoretical Extensions of
Logic Programming (P. Schroeder-Heister Ed.), pp 253-281, Tuebingen, Gemany, 1989,
Springer-Verlag LNAI 475.

D. Miller: "A logical analysis of modules in logic programming”, in Journal of Logic
Programming, Vol. 6, 1989, pp 79-108.

D. Miller, G. Nadathur, F. Pfenning, A. Scedrov: "Uniform proofs as a foundation for logic
programming", Annals of Pure and Applied Logic 51 (1991), pp 125-157, North-Holland.

A. Montanari, E. Maim, E. Ciapessoni, E. Ratto: "Dealing with Time Granularity in the Event
Calculus", in Proc. of FGCS'92 Conference, Tokyo, Japan, June 1992, pp 702-712.

M.J. Sergot: "(Some Topics in) Logic Programming in AI", Lecture Notes of the GULP
Advanced School on Logic Programming, Alghero, Italy, 1990.

M.P. Shanahan: "Prediction is Deduction but Explanation is Abduction", in Proc. of IJCAI'89 -
11th International Joint Conference on Artificial Intelligence, Detroit, 1989, pp 1055-1050.

M.P. Shanahan: "Representation of Continuous Change in the Event Calculus”, in Proc. of -
ECAI'90 - 9th European Conference on Artificial Intelligence Conference, Stockholm, 1990, pp
598-603.

18

[20] S. Sripada: "A Metalogic Programming Approach to Reasoning about Time in Knowledge Bases",
in Proc. of IJCAI'93 - 13th International Joint Conference on Artificial Intelligence, Chambery

(France), pp 860-863.

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Melion University does not discriminate and Carnegie Mellon University is required not to
discriminate in admission, employment or administration of its programs on the basis of race, color,
national origin, sex or handicap in violation of Title VI of the Givil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal,
state or local laws, or executive orders. ’

In addition, Carnegie Mellon University does not discriminate in admission, employment or adminis-
tration of its programs on the basis of religion, creed, ancestry, belief, age, veteran status, sexual
orientation or in violation of federal, state or local laws, or executive orders.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice
President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
telephone (412) 268-2056.

